Discussion. Atomic coordinates are given in Table 1.* Table 2 gives the bond lengths and angles of the compound. Fig. 1 shows the molecule. The X-ray analysis has proven the molecule to be the (Z) isomer of (II), stabilized by a hydrogen bond between O(22) and N(4) [2.571 (6) Å] as previously postulated (Dunn & Kinnear, 1984). O(22)-H(221) 1.031 (10), N(4)... H(221) 1.698 (10) Å. The phenyl group C(23)...C(28) is close to coplanar with the pyrroloquinazolinone fragment giving the maximum extended π bonding. [The torsion angle C(3)-C(21)-C(23)-C(24) is 171.27 (7)°, angle between the normals to the mean planes of the two benzene rings 7.55 (8)°.]

A number of close contacts exist between O(22)(x, $\frac{1}{2} - y$, $\frac{1}{2} + z$) and atoms C(9) [3.087 (5) Å], N(10 [3.146 (6) Å] and O(01) [3.348 (5) Å] in the parent molecule. A further short contact exists from O(22)- $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$ to C(1) [3.289 (7) Å] in the parent molecule.

Fig. 1. Molecule viewed perpendicular to the plane C(4a)-C(5)-C(6)-C(7)-C(8)-C(8a). Heights of atoms from this plane are given in Å.

References

- DUNN, A. D., GUY, E. L. M. & KINNEAR, K. I. (1983). J. Heterocycl. Chem. 20, 779–780.
- DUNN, A. D. & KINNEAR, K. I. (1984). J. Heterocycl. Chem. In the press.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- ROBERTS, P. & SHELDRICK, G. M. (1975). XANADU. Program for torsion angles, mean plane and vibrational correction calculations. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for structure determination. Univ. of Cambridge, England.

Acta Cryst. (1985). C41, 284-286

Structure of *cyclo*(- α -Aminoisobutyryl-L-phenylalanyl-), C₁₃H₁₆N₂O₂

BY K. SUGUNA AND S. RAMAKUMAR

Department of Physics, Indian Institute of Science, Bangalore-560 012, India

AND R. NAGARAJ* AND P. BALARAM

Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560 012, India

(Received 6 April 1984; accepted 8 October 1984)

Abstract. $M_r = 232 \cdot 27$, monoclinic, $P2_1$, a = 9.646 (4), b = 6.133 (3), c = 10.757 (6) Å, $\beta = 101.97$ (4)°, $U = 622 \cdot 5$ Å³, Z = 2, $D_m = 1.25$, $D_x = 1.24$ Mg m⁻³, λ (Cu K α) = 1.5418 Å, $\mu = 0.605$ mm⁻¹, F(000) = 248, room temperature, R = 0.065 for 820 significant reflections. The peptide units are planar. The diketopiperazine ring assumes a flat boat conformation. The phenylalanyl ring shows a folded geometry with $\chi^1 = 64.6$ (7) and $\chi^2 = 96.4$ (7)°.

0108-2701/85/020284-03\$01.50

Introduction. The structure analysis of the title compound [*cyclo*(-Aib-L-Phe-)] was undertaken as a continuation of our investigations on the structures of diketopiperazines (Suguna, Ramakumar, Shamala, Venkataram Prasad and Balaram, 1982) and of peptides containing the α -aminoisobutyric acid (Aib) residue (Prasad & Balaram, 1984). The structure is also of interest since diketopiperazines containing aromatic rings have been extensively studied as models for the interaction of the rings with the peptide bond (Ramani, Sasisekharan & Venkatesan, 1977). *cyclo*(-Aib-L-Phe-) was synthesized as described earlier for related compounds (Nagaraj & Balaram, 1977).

© 1985 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39830 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

^{*} Present address: Centre of Cellular and Molecular Biology, Hyderabad-500 007, India.

Experimental. Crystals were grown by controlled diffusion of ethyl acetate into saturated methanol solution. D_m by flotation in CCl₄/hexane. Space group and cell parameters determined by rotation and Weissenberg methods; cell dimensions refined by least squares using 25 high-angle reflections on a Nonius CAD-4 diffractometer. Intensity data collected on the diffractometer with $\omega - 2\theta$ scans using graphite-monochromated Cu Ka radiation. Crystal $0.05 \times 0.08 \times 1.43$ mm. $\theta_{max} = 60^{\circ}$. Two standard reflections (103 and $11\overline{2}$) monitored at regular intervals, crystal stable to X-rays. Intensities not corrected for absorption ($\mu r \simeq 0.05$). Out of 915 unique reflections measured up to $\theta = 60^{\circ}$, 820 considered significant $[|F| \ge 2\sigma(|F|)]$. Index range h $\pm 10, k 0/6, l 0/12$. Structure solved using MULTAN80 (Germain, Main & Woolfson, 1971; P. Main, 1980, private communication). The E map calculated with the phases corresponding to the best set revealed six atoms of the diketopiperazine ring. Karle recycling (Karle, 1968) with these atoms gave the other 11 nonhydrogen atoms. Full-matrix least-squares refinement on F (SHELX76, Sheldrick, 1976) with positional and isotropic temperature factors of non-H atoms converged at R = 0.13; inclusion of anisotropic temperature factors reduced R to 0.087. At this stage all the H atoms could be located from a difference map. Rreduced to 0.065 when the refinement was carried out with inclusion of the H atoms in the structure factor calculation and with an individual weight, $w \propto$ $1/\sigma^2(|F|)$. H-atom positions were not refined. All H atoms were given an isotropic temperature factor (U) of 0.050 Å². In the final cycle of refinement, $\Delta/\sigma < 0.1$ and wR = 0.071. $\Delta \rho$ in final difference map within +0.3and $-0.3 \text{ e} \text{ Å}^{-3}$.

Discussion. Final parameters are listed in Table 1.* Fig. 1 shows the *cyclo*($-\alpha$ -aminoisobutyryl-L-phenyl-alanyl-) molecule with the numbering scheme.

* Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, bond distances and angles involving H atoms, torsion angles and Tables 3, 4 and 5 have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39813 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. View of the molecule showing the folded geometry of the phenylalanyl residue.

Table 2 lists the bond lengths, bond angles and selected torsion angles (IUPAC-IUB Commission on Biochemical Nomenclature, 1970) involving the non-hydrogen atoms, and also the hydrogen-bonding parameters involving the non-hydrogen atoms. The torsion angles ω_1 , ω_2 [-1.5 (9), -4.2 (10)°, Table 2] about the peptide bond show that the peptide units are nearly planar. Thus the peptide conformation compares more favourably with that of *cyclo*(-Gly-L-Trp-) (ω_1 , $\omega_2 = 3, -3^\circ$) (Morris, Geddes & Sheldrick, 1974) than

Table 1. Fractional coordinates $(\times 10^4)$ and equivalent isotropic temperature factors of non-H atoms with e.s.d.'s in parentheses

$U_{eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
x	У	Ζ	$U_{eq}(\dot{\mathbf{A}}^2)$	
7024 (5)	-4452	9210 (4)	0.053 (3)	
9840 (5)	2712 (8)	8266 (4)	0.044 (3)	
8944 (6)	-2932 (9)	8658 (4)	0.033 (3)	
7979 (6)	1212 (9)	8859 (5)	0.037 (3)	
7693 (7)	-2807 (10)	8978 (6)	0.034 (4)	
9193 (7)	1094 (11)	8499 (5)	0.030 (3)	
7026 (7)	-554 (11)	9076 (6)	0.036 (4)	
9813 (6)	-1144 (10)	8342 (5)	0.028 (3)	
10078 (7)	-1417 (11)	6995 (6)	0.042 (4)	
8765 (6)	-1273 (11)	5972 (5)	0.039 (4)	
8408 (8)	704 (12)	5346 (6)	0.055 (4)	
7201 (9)	851 (16)	4417 (6)	0.065 (5)	
6279 (9)	-900 (18)	4111 (6)	0.074 (5)	
6622 (10)	-2824 (15)	4752 (8)	0.075 (6)	
7866 (9)	-3032 (12)	5652 (6)	0.057 (4)	
6753 (7)	-296 (11)	10431 (6)	0.050 (4)	
5645 (7)	-463 (12)	8110 (6)	0.050 (4)	
	U _{ec} x 7024 (5) 9840 (5) 8944 (6) 7979 (6) 7693 (7) 9193 (7) 7026 (7) 9813 (6) 10078 (7) 8765 (6) 8408 (8) 7201 (9) 6279 (9) 6622 (10) 7866 (9) 6753 (7) 5645 (7)	$U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* d_i^* d_i^* d_i^* d_j^* d_j^$	$U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j \cdot \frac{x}{7024} (5) -4452 9210 (4) \\ 9840 (5) 2712 (8) 8266 (4) \\ 8944 (6) -2932 (9) 8658 (4) \\ 7979 (6) 1212 (9) 8859 (5) \\ 7693 (7) -2807 (10) 8978 (6) \\ 9193 (7) 1094 (11) 8499 (5) \\ 7026 (7) -554 (11) 9076 (6) \\ 9813 (6) -1144 (10) 8342 (5) \\ 10078 (7) -1417 (11) 6995 (6) \\ 8765 (6) -1273 (11) 5972 (5) \\ 8408 (8) 704 (12) 5346 (6) \\ 7201 (9) 851 (16) 4417 (6) \\ 6229 (9) -900 (18) 4111 (6) \\ 6622 (10) -2824 (15) 4752 (8) \\ 7866 (9) -3032 (12) 5652 (6) \\ 6753 (7) -296 (11) 10431 (6) \\ 5645 (7) -463 (12) 8110 (6) \\ \end{cases}$	

Table 2. Bond distances (Å), bond angles (°), selected torsion angles (°) and hydrogen-bond geometry

C(1)-O(1) 1.250) (7)	C(2) - N(2)	1.309 (9)		
C(1)-N(1) 1.324	4 (9)	C(4) - C(5)	1.532 (8)		
C(1)-C(3) 1.537	7 (9)	C(5) - C(6)	1.498 (9)		
N(1)-C(4) 1.463	3 (8)	C(6) - C(7)	1.395 (10)		
C(3)-C(12) 1.542	2 (9)	C(7) - C(8)	1.371(10)		
C(3)-C(13) 1.511	1 (9)	C(8) - C(9)	1.390 (14)		
C(3)-N(2) 1.470) (9)	C(9) - C(10)	1.372 (14)		
C(2)-C(4) 1.521	(9)	C(10) - C(11)	1-382 (12)		
C(2)-O(2) 1.226	5 (8)	C(6)-C(11)	1-382 (10)		
N(1)-C(1)-O(1)	22.8 (6)	C(4)-C(2)-O(2)	118.7 (6)		
N(1)-C(1)-C(3) 1	19-1 (6)	N(1)-C(4)-C(2)	113.2 (5)		
O(1)-C(1)-C(3) 1	18-1 (6)	N(1)-C(4)-C(5)	110.7 (5)		
C(12)-C(3)-C(13) 1	10.3 (5)	C(2)-C(4)-C(5)	110.5 (5)		
C(1)-C(3)-C(12) 1	08-2 (5)	C(4)-C(5)-C(6)	114.0 (5)		
C(1)-C(3)-N(2) I	11.5 (5)	C(5)-C(6)-C(7)	119.5 (6)		
N(2)-C(3)-C(13) 1	10.8 (5)	C(5)-C(6)-C(11) 121.9 (6)		
N(2)-C(3)-C(12) 1	08.0 (5)	C(7)-C(6)-C(11) 118-6 (6)		
C(1)-C(3)-C(13) = 1	.07.9 (5)	C(6)-C(11)-C(1	0) 120.7 (7)		
C(1) - N(1) - C(4) = 1	27.9 (5)	C(11)-C(10)-C(9) 121.0 (8)		
C(2)-N(2)-C(3) !	29.3 (5)	C(10)-C(9)-C(8) 118-0 (8)		
N(2)-C(2)-C(4) 1	18.6 (6)	C(9)-C(8)-C(7)	121.8 (8)		
N(2)-C(2)-O(2) 1	22.7 (6)	C(8)-C(7)-C(6)	119.7 (7)		
C(3)-C(1)-N(1)-C(4)) –1.5 (9)	C(1)-N(1)-C(4)	-C(5) -120·5 (7)		
C(1)-N(1)-C(4)-C(2)) 4.2 (9)	N(2)-C(2)-C(4)	-C(5) 123·4 (6)		
N(1)-C(4)-C(2)-N(2)) -1.4 (8)	N(1)-C(4)-C(5)	-C(6) 64.6 (7)		
C(4) - C(2) - N(2) - C(3)) -4.2 (10)	C(2)-C(4)-C(5)	-C(6) -61·7 (7)		
C(2) - N(2) - C(3) - C(1)) 6.7 (9)	C(4) - C(5) - C(6)	-C(11) -81·6 (8)		
N(2)-C(3)-C(1)-N(1)) -3.6(8)	C(4) - C(5) - C(6)	-C(7) 96·4 (7)		
Hydrogen-bonding geometry					

N…O

 $\begin{array}{ll} N(1) - H(1) \cdots O(2^{3}) & 2 \cdot 866 \ (6) \ \dot{A} \\ N(2) - H(2) \cdots O(1^{11}) & 2 \cdot 865 \ (7) \end{array}$

Symmetry code: (i) x, 1 - y, z; (ii) x, 1 + y, z.

with that of *cyclo*(-Gly-L-Tyr-) ($\omega_1, \omega_2 = -4, -7^\circ$) (Lin & Webb, 1973). The torsion angles φ, ψ and ω of the peptide backbone [$\varphi_{Aib} = 6.7$ (9), $\psi_{Aib} = -3.6$ (8), $\omega_{Aib} = -1.5$ (9), $\varphi_{Phe} = 4.2$ (9), $\psi_{Phe} = -1.4$ (8), $\omega_{Phe} = -4.2$ (10)°] (Table 2) indicate that the diketo-piperazine ring assumes a flat boat conformation.

The bond lengths (Table 3, deposited) and bond angles (Table 4, deposited) of the Aib residue compare well with those found in cyclo(-Aib-Aib-) and cyclo-(-Aib-L-isoleucyl-) (Suguna et al., 1982). The bond angle $C^{\alpha}-N-C'$ (τ_n) in these three compounds [129.3 (6), $130 \cdot 1$ (3) and $127 \cdot 9$ (7)°], however, is significantly greater than the average value (122.1°) found in Aib-containing linear peptides (Paterson, Rumsey, Benedetti, Nemethy & Scheraga 1981). This feature is observed in many cyclic dipeptides, e.g. cyclo(-Gly-Gly-) (126.0°) (Degeilh & Marsh, 1959), cyclo-(-D-Ala-L-Ala-) (127.9°) (Sletten, 1970), cyclo(-L-Ala-L-Ala-) (126.2, 125.2°) (Sletten, 1970), cyclo(-Gly-L-Tyr-) (126.0, 126.9°) (Lin & Webb, 1973) and cyclo(-L-Ser-L-Tyr-) (128.3, 127.4°) (Lin & Webb, 1973).

The molecule is in a folded conformation as shown in Fig. 1. The phenylalanyl C^{α} atom occupies an axial position with $\chi^1 = N(1)-C(4)-C(5)-C(6) = 64.6$ (7) and $\chi^2 = C(4)-C(5)-C(6)-C(7) = 96.4$ (7)°. These values are in good agreement with those corresponding to the theoretically calculated minimum-energy conformation for the Phe residue ($\chi^1 = 60, \chi^2 = 90^\circ$) (Caillet, Pullman & Maigret, 1971; Chandrasekaran, Lakshminarayanan, Mohanakrishnan & Ramachandran, 1973).

The folded conformation for the molecule is consistent with the situation observed in other diketopiperazines containing the phenylalanyl and tyrosyl residues (Table 5, deposited), such as *cyclo*-(-L-Pro-L-Phe-) (Ramani, Venkatesan, Marsh & Hu Kung, 1976), *cyclo*(-N-Me-L-Phe-N-Me-D-Phe-)

Fig. 2. Packing of the molecules viewed down the a^* axis.

(Benedetti, Marsh & Goodman 1976), cyclo(-Gly-L-Tyr-) (Lin & Webb, 1973) and cyclo(-L-Ser-L-Tyr-) monohydrate (Lin & Webb, 1973). However, in the case of $cyclo(-N-Me-L-Phe_2-)$ (Benedetti *et al.*, 1976) one of the phenylalanyl rings folds over the diketopiperazine ring whereas the other is forced away from this ring to avoid steric repulsions.

In the solid-state conformation, one of the Aib CH₃ groups is located close to the phenyl ring [C(13) is 4.07 Å from the midpoint of the benzene ring]. The 100 MHz ¹H NMR spectrum of *cyclo*(-Aib-L-Phe-) in trifluoroacetic acid solution reveals a large chemical shift difference of 0.69 p.p.m. between the two Aib CH₃ groups. The abnormally high field resonance at 0.88 p.p.m. (from tetramethylsilane reference) is due to the CH₃ group proximal to the benzene ring. This suggests that the folding pattern of the Phe side chain observed in the crystal structure is maintained in solution.

The crystal structure is stabilized by $N-H\cdots O$ hydrogen bonds (Fig. 2). Each molecule forms a pair of hydrogen bonds to adjacent **b**-translated molecules (Table 2). The hydrophobic and hydrophilic groups are neatly segregated into adjacent layers parallel to the *c* axis.

KS and SR thank Professor M. A. Viswamitra for encouragement and facilities for carrying out the work.

References

- BENEDETTI, E., MARSH, R. E. & GOODMAN, M. (1976). J. Am. Chem. Soc. 98, 6676–6684.
- CAILLET, J., PULLMAN, B. & MAIGRET, B. (1971). Biopolymers, 10, 221-224.
- CHANDRASEKARAN, R., LAKSHMINARAYANAN, A. V., MOHANAKRISHNAN, P. & RAMACHANDRAN, G. N. (1973). *Biopolymers*, **12**, 1421–1425.
- DEGEILH, R. & MARSH, R. E. (1959). Acta Cryst. 12, 1007-1014.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368–376.
- IUPAC-IUB COMMISSION ON BIOCHEMICAL NOMENCLATURE (1970). *Biochemistry*, **9**, 3471–3479.
- KARLE, J. (1968). Acta Cryst. B24, 182-186.
- LIN, C. F. & WEBB, L. E. (1973). J. Am. Chem. Soc. 95, 6803-6811.
- MORRIS, A. J., GEDDES, A. J. & SHELDRICK, B. (1974). Cryst. Struct. Commun. 3, 345-349.
- NAGARAJ, R. & BALARAM, P. (1977). Heterocycles, 7, 885-890.
- PATERSON, Y., RUMSEY, S. M., BENEDETTI, E., NEMETHY, G. & SCHERAGA, H. A. (1981). J. Am. Chem. Soc. 103, 2947–2955.
- PRASAD, B. V. V. & BALARAM, P. (1984). Crit. Rev. Biochem. 16, 307–348.
- RAMANI, R., SASISEKHARAN, V. & VENKATESAN, K. (1977). Int. J. Pept. Protein Res. 9, 277–292.
- RAMANI, R., VENKATESAN, K., MARSH, R. E. & HU KUNG, W. J. (1976). Acta Cryst. B32, 1051–1056.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SLETTEN, E. (1970). J. Am. Chem. Soc. 92, 172-177.
- SUGUNA, K., RAMAKUMAR, S., SHAMALA, N., VENKATARAM PRASAD, B. V. & BALARAM, P. (1982). *Biopolymers*, 21, 1847–1855.